Archiwa tagu: splątanie kwantowe

Kwantowa rewolucja polskich fizyków – Dr hab. Magdalena Stobińska

Share

O sposobie pracy QUANTEC`a wiemy codziennie więcej. Nowe odkrycia naukowców przybliżają niektórych do prostej możliwości akceptacji tego, co dotychczas wymagało zaufania. Dziś, dzięki Dr hab. Magdalenie Stobińskiej jesteśmy znów o krok dalej w naszym rozumieniu tego, co poza wyobraźnią. Dziękuję redakcji serwisu warszawa.pl za cenny materiał.

„Dr hab. Magdalena Stobińska z Uniwersytetu Warszawskiego zaprezentowała na łamach prestiżowego czasopisma Physical Review Letters nową metodę kwantowego sterowania cząstkami światła (fotonami).

Praca ta jest zwieńczeniem projektu europejskiego Marie Curie Career Integration Grant zrealizowanego przez nią na Uniwersytecie Gdańskim w latach 2012-2016. Zdaniem wielu naukowców, metoda ta może pomóc zrewolucjonizować m.in. sektor informatyczny, wprowadzając skuteczniejsze zabezpieczenia danych, czy też przyspieszać procesy generowania kodów losowych, wykorzystywanych np. w sektorze bankowym. Tematyka ta będzie kontynuowana przez dr hab. M. Stobińską w Warszawie, w ramach jej nowego projektu First Team Fundacji na Rzecz Nauki Polskiej.

Do tej pory laboratoria na całym świecie wykorzystywały przede wszystkim tzw. nierówności Bella, metodę opracowaną w 1964 r. przez irlandzkiego fizyka, który podważył jedną z teorii Einsteina dotyczącą badań nad mechaniką kwantową. Zespół pod kierownictwem dr hab. M. Stobińskiej w którego prace istotny wkład wniósł dr Adam Buraczewski, oraz zespół prof. dr hab. Pawła Horodeckiego z Politechniki Gdańskiej i Krajowego Centrum Informatyki Kwantowej z dr Adamem Rutkowskim z Uniwersytetu Gdańskiego, dostarczył międzynarodowej społeczności łatwiejszą w implementacji metodę, która dostosowana jest do najnowszych układów doświadczalnych w laboratoriach optycznych i która przyczyni się do lepszego zrozumienia korelacji kwantowego sterowania.

Jak wyjaśnia dr hab. M. Stobińska, kwantowe sterowanie można porównać do zabawy marionetką, gdzie rolę niewidzialnych sznurków pełnią kwantowe korelacje, czyli splątanie dwóch lub więcej cząstek. Dzięki takim stanom splątanym, możliwa jest np. znana z filmów science fiction kwantowa teleportacja, czyli przeniesienie stanu cząstek (informacji) na odległość.

Opracowana w 100% przez polski zespół metoda kwantowego sterowania fotonami została od początku zaprojektowana tak, aby była odporna na niedoskonałości implementacji. Dzięki temu jest znacznie prostsza w użyciu od metody Bella i pozwala na realizację zadań, które dotąd były poza zasięgiem laboratoriów na całym świecie.

Dr hab. M. Stobińska ma nadzieję na wykorzystanie polskiej metody w przyszłych technologiach kwantowych, m.in. w celu certyfikowania urządzeń pod kątem bezwarunkowego bezpieczeństwa przesyłania informacji lub użycia ich do obliczeń kwantowych. Dzięki temu nowa metoda kwantowego sterowania pomoże przeprowadzić tzw. drugą rewolucję kwantową, która zaowocuje zastosowaniami technologii kwantowych w życiu codziennym.

Teorię opisującą świat kwantów sformułowano już prawie 100 lat temu, ale tajemnice mikroświata nadal nas zaskakują. Udało nam się zaakceptować myśl, że pojedyncze fotony lub elektrony znajdują się, z pewnym prawdopodobieństwem, w każdym punkcie przestrzeni jednocześnie; podobnie wiemy już, że klasyczna logika dwuwartościowa tam nie obowiązuje. Ilustruje to przykład słynnego kota Schrödingera opisanego superpozycją stanów, których współistnienie klasycznie jest wykluczone. Efekty kwantowe pozwalają na realizację niektórych wizji znanych dotąd z fantastyki naukowej, np. kwantowej teleportacji – przeniesienia stanu kwantowego dowolnie daleko. Teraz uczymy się sterować cząstkami na odległość. Kwantowe sterowanie można porównać do zabawy marionetką, gdzie rolę (niewidzialnych) sznurków pełnią kwantowe korelacje. Możliwość sterowania zademonstrowano już dla pojedynczych fotonów. Zespoły fizyków pod kierunkiem dr hab. Magdaleny Stobińskiej z Instytutu Fizyki Teoretycznej Uniwersytetu Gdańskiego oraz prof. dr. hab. Pawła Horodeckiego z Katedry Fizyki Teoretycznej i Informatyki Kwantowej Politechniki Gdańskiej i Krajowego Centrum Informatyki Kwantowej opracowały metodę, dzięki której będzie można tego dokonać także dla stanów wielofotonowych, wytwarzanych przez najbardziej rozpowszechniony typ źródła światła kwantowego. Została ona przedstawiona w publikacji, która ukazała się w styczniu 2017 r. w czasopiśmie Physical Review Letters.

Kwantowe korelacje najczęściej kojarzą się nam ze splątaniem kwantowym. Jednakże jest to tylko jeden z kilku ich typów. Korelacje są klasyfikowane ze względu na ich „moc”, czyli przydatność do implementacji kwantowych technologii. Splątanie dwóch cząstek wyraża się przez skorelowaną losowość wyników pomiarów na nich wykonanych. Dzięki stanom splątanym możliwa jest teleportacja kwantowa. Źródłem najsilniejszych korelacji, tzw. nielokalności Bella, są stany splątane, które łamią nierówności Bella. Pozwalają one np. na generację liczb losowych. Niestety, eksperymentalne obserwacje łamania są niezwykle trudne, szczególnie dla stanów wielocząstkowych, ponieważ ilość pomiarów bardzo szybko rośnie z ilością cząstek. Kwantowe sterowanie stanowi odrębny, najmniej zbadany typ korelacji, który jest łatwiejszy do weryfikacji w laboratorium. Jest bardzo prawdopodobne, że pozwolą one na realizację zadań, które dotąd wymagały łamania nierówności Bella i były poza naszym zasięgiem.

Najnowszą aparaturę stosowaną w eksperymentach kwantowo-optycznych stanowią układy optyki zintegrowanej. W szklanych lub kryształowych chipach z laserowo wykonanymi falowodami zachodzą procesy kwantowe o ogromnej złożoności. Są one fotonicznym odpowiednikiem elektronicznych układów scalonych. Interferują w nich kwantowe stany światła wytwarzane dzięki zjawisku parametrycznego podziału częstości. Źródła światła produkują stan tzw. splątanej ściśniętej próżni, składający się z wielu fotonów skorelowanych w polaryzacjach, które na wyjściu z chipów są zliczane za pomocą detektorów wykorzystujących nanotechnologię. Przewiduje się, że dzięki takim chipom przeprowadzona zostanie „druga kwantowa rewolucja”, polegająca na zastosowaniu technologii kwantowych w życiu codziennym. Dlatego badanie korelacji kwantowych wytwarzanych w tych układach jest ważne.

Polskie zespoły zainteresowała możliwość użycia protokołu kwantowego sterowania do testowania stanów splątanej ściśniętej próżni. Opracowana metoda umożliwia łatwą w realizacji weryfikację splątania, przy czym liczba wykonanych pomiarów pozostaje niemal stała pomimo wzrostu liczby fotonów. Ponadto, nierówność od początku zaprojektowano tak, aby była odporna na niedoskonałości implementacji, dzięki czemu jest dobrze dostosowana do realistycznych układów eksperymentalnych, w których występują np. straty. Wszystkie te cechy powodują, że test nowej nierówności sterowania jest znacznie prostszy do wykonania niż test Bella.

Praca zespołów dr hab. Stobińskiej i prof. Horodeckiego stanowi ważny wkład w międzynarodowe badania kwantowych korelacji i przyczyni się do lepszego zrozumienia zjawiska kwantowego sterowania. Nowa nierówność pozwala na poszukiwanie kwantowego splątania np. w procesach chemicznych i biologicznych, które mogłyby kiedyś stać się nowymi platformami dla informatyki kwantowej. W szczególności, rezultat może posłużyć do szacowania ilości splątania, certyfikowania generatorów liczb losowych oraz kodów losowego dostępu. Autorzy publikacji formułują także kilka pytań otwartych. Znalezienie na nie odpowiedzi pozwoliłoby zrozumieć zależności między kwantowym sterowaniem a innymi typami korelacji kwantowych, a także szczególną teorią względności.”

źródło: http://www.warszawa.pl

Share

Zasada stanu splątania

Share

Alain Aspect, oraz Nicolas Gisin wykazali w 1982 roku, że fotony bliźniacze pozostają ze sobą w stosunku „tajnego porozumienia”. Erwin Schrödinger nadał temu zjawisku nazwę „splątania kwantowego”. Co to znaczy?

Znaczy to że:
1. Cząsteczki, które raz oddziaływały na siebie, nie mogą być już postrzegane jako oddzielne obiekty, nawet, jeśli są bardzo oddalone od siebie przestrzennie.

2. Obie cząsteczki znajdują się ze sobą w trwałym związku, który jest niezależny od przestrzennego dystansu.

3. Reakcja na zmianę stanu jednej cząsteczki da się od razu zmierzyć w drugiej cząsteczce – ograniczenie prędkości światła jest przez to anulowane.

Wyniki badań Aspecta i Gisina stały się podstawą następnych odkryć:

  • Serge Haroche (fr.fizyk- zdobywca Nagrody Nobla) wykazał istnienie nie tylko „splątanych fotonów”- ale i „splątanych atomów”
  • Anton Zeilinger (wiedeński profesor uniwersytecki) splątał ze sobą cztery cząsteczki światła- a w roku 1996 doprowadził do pierwszej teleportacji fotonu
  • Raymond Laflamme (kandadyjski fizyk) krótko potem teleportował stan jednego atomu na drugi
  • Naukowcy z Szanghaju wysłali niedługo potem przy pomocy promienia laserowego bit kwantowy na odległość 97 km.
  • Na wyspie La Palma (Wyspy Kanaryjskie), w obserwatorium Roque de los Muchachos wytworzono splątane fotony; jeden z nich został wysłany przez teleskop do drugiego z teleskopów- stojącego na Teneryfie, a siostrzany foton został zarejestrowany na La Palmie. Splatanie kwantowe można było zobaczyć w tym doświadczeniu dokładnie- pomimo konieczności przekroczenia atmosfery przez foton

Skoro więc cała egzystencja pochodzi z jednego  źródła („po Wielkim Wybuchu”), nie tylko dwa fotony- ale również całe stworzenie – łącznie z ludźmi- rzecz jasna- podlega splątaniu kwantowemu.

A to, co robi, myśli i mówi człowiek- czego się uczy, co uzdrawia, a szczególnie jego osobisty rozwój, przenosi się na wszystkich innych ludzi, oraz elementy całego stworzenia.

 

Share